37T
RU :1

Third Session

OMNICODE—A COMMON LANGUAGE PROGRAMMING SYSTEM

BY
RUSSELL C. McGEE!

The crux of what has been done in the past has been the introduction of
a third language into programming—the first two being the language of
the machine and the language in which the problem is formulated. (The
following analogy is illustrated in Fig. 1.) Until very recently program-
mers have been like an American who can speak German who finds himself
with a Frenchman who can speak Russian. In order to communicate with
the Frenchman, the American must find a German who can speak Russian.
It would be simpler if the American would learn to speak French or the
Frenchman English but, of course, the American would rather have the
Frenchman learn to speak English than learn French himself. Similarly,
programmers would like computers and data-processing machines to under-
stand the language in which their problems are formulated.

GERMAN FREHCHMAN

FRTIFIEIAL
WO 0,

Fia. 1.

It is toward this end that we are working at Hanford. And so for
purposes of our discussion today, I should like to define automatic pro-
gramming as follows :

1. The development of a way of writing programs (a language) which
is closely akin to the language in which problems are formulated.

2. An assembly routine for translating this language to machine lan-
guage.

3. Accomplish 1 and 2 so that the expenditure in time, money and man-
power from problem origination to solution is minimized.

1 Analyst, Automatic Programming, General Electric Company, Richland, Washington.
57

J—

o o o DA s

=y

il

|
ia_]
|

58 RusseLL C. McGEE

Now these objectives have to be evaluated in terms of the types of
problems one wishes to solve. A system which is useful in one installation
is not necessarily useful in another because of differences in applications.
Let use see how these objectives have been evaluated at Hanford.

All scientific and commercial calculations and data processing are per-
formed at Hanford by a service organization—the Data Processing Opera-
tion. Since June of 1955 we have operated an IBM 702 and in August of
last year we acquired a “650.” The “702” is equipped with 20,000 char-
acters of core memory, a 60,000-character magnetic drum, nine tape units,
a card reader, card punch and two printers. The “650” is used exclusively
for scientific calculations and hence does not have the alphabetic device or
other optional features.

We handle a wide variety of applications—from payroll and inventory
control to reactor design calculations and meteorological data reduction.
Figure 2 shows the distribution of programs by program type on the “702"
during a typical month.

HTIF! WUMBER OF PROOAAMS
HOH-ROUTINE & O TR BE
1
WOUTIHE D)
BEVELOPHENT i]z I
COMMERCIAL " WUMDER OF PROGRAMI
v Ap__ 8o 80 X

PAYROLL

SALARY DISTRIDUTION

INVINTORY CONTROL F5

VEMICLE

CLASSIFIED FILES

WisE.

FROGRAM STATISTICS { MARGH 1956)
Fic. 2.

In view of the dual nature of our applications, it might appear that we
need two automatic programming systems—one for scientific and the other
for commercial problems. However, it has been proven to our satisfaction
that there are noteworthy advantages in making a system sufficiently com-
prehensive that it may be used for all the applications in the installation.

This proof was arrived at through the use of SCRIPT—a system de-
veloped in 1955 by Mr. C. E. Thompson of General Electric Company and
Mr. John Jackson of IBM. Figure 3 is a sample of a SCRIPT program.
The name SCRIPT is an acronym derived from the title Scientific and
Commercial Sub-Routine Interpreter and Program Translator. As the
name implies, the system was developed for use on a wide range of applica-
tions. Although SCRIPT has been a successful system, one is still aware
when using it of the artificial nature of the symbolic code. Symbolic ad-

OMNICODE 59

dresses have no intrinsic “personality” and although provision is made for
describing the function of each instruction and storage assignment, the
description is often inadequate or omitted entirely in the haste of writing
the program. Therefore, after SCRIPT had been in use for several months
we turned again to the problem of finding a language better suited for writing
programs at Hanford.

The work of designing a language was started shortly after the con-
version of our work from Electric Accounting Machines to the “702” was
completed. It is not surprising then that we soon started thinking of the
language as one we would use for writing programs for machines other than
the “702.” If we ever changed machines again, conversion would consist of
re-writing one routine—wiz., the assembly routine. Then all of the old
programs could be reassembled on the new machine with a relatively trivial

Z o |+ Log (X+cosY)2

Z = 14 Log(X+cosv)® INSTRUCTIONS
INSTRUCTIONS LINE] | LABEL__JOPERATION _OPERAND
CL| LOCATION |OPERATION ADDRESS INCR o1 START READ |VARIABLES
01.0l.0| REC 70.01.0 oz | cos
oz CNF 70.01.0 024 03 ADD X
03 AbF | ro.olo |o12 o4 | | MULT
04 MPF A2.90.1 05 | | Log
05 LNF AZ.90.10 06 | ADD (IF
06 ADF 80.01.0 o7 IS Z
o7 STF 70.01.0 |036 o8 | | WRITE |VARIABLES
[]:] wWT4 70.01.0 fg 1' __IL START
o9 TR o1.01.0
L — 1] ' /L//— l_‘—--.__J
"
STORAGE ASSIGNMENT RECOAD LAYOUT
CL]LOCATION|LENGTH [SIGN VALUE [LINET [TADEL _ [LED[DEC =
| [ro.01.0 | o8I 01 | VARIABLES
1[80.01.0| FI2 | + [I000000000+00] oz| I x F
UM N o3| | ¥ F
RECORD LAYOUT X © 1-12 g2l .
¥ 0 13-24 o5
z i28-38 ___9__'?_..—-’-'—‘*"'_#]
Fic. 3. Fic. 4.

amount of effort. Also, if we ever acquired additional machines, work
could be shifted from one machine to another as the schedules on the in-
dividual machines dictated. Training is also substantially reduced by using
a common programming language. One teaches a programming system
instead of a machine.

In view of these considerations, our objective became to develop a
common language for writing programs for solving scientific and commercial
problems for any present and future machines at Hanford. This work was
begun in earnest about May of last year, What we came up with was
OMNICODE—something closely akin to ordinary English. Figure 4
shows the evaluation of a simple equation in OMNICODE in its original
version.

The record layout form describes a record named VARIABLES which

'

e e e o . b

e e T

" 60 Russert. C. McGEE

is being introduced into the program. The form tells us that each record by
this name contains fields called X, ¥ and Z, each of which is a floating point
number. The program says:

Read the record Variables

Obtain the Cosine of ¥

Add X

Multiply the previous result by itself
Obtain the Log of the previous result
Add a floating point 1

The result IS Z

Then Write the record Variables

and Transfer to the Start

The example illustrates the method of introducing constants into a program.
When we want to add 1, we merely enter the numeral in parentheses in the
operand column and follow it by an F indicating floating point.

Note also that the only instruction given a label is the one referred to.
Others could be given labels but it is not necessary. Instructions are given
names just like values and referred to by these names. :

This example is just a glimpse of what we planned in the original version
of OMNICODE. In summary we proposed the following:

1. Functional storage layout forms for the three basic input/output
media—cards, tape and printed reports.

2. Assignment of English language names to operations, instructions
and storage. _

3. A functional operation vocabulary designed to satisfy the program-
mer’s needs.

4. A single operation vocabulary for both fixed and floating point
commands.

5. Provision for defining constant and working storage within the
program.

6. Provision for automatic restarts and check points as a part of every
assembled program.

7. Provision for automatic address modification by simulating index
registers.

8. Automatic decimal control for fixed decimal arithmetic.

9. Multiple levels of labeling to assist in the preparation of large pro-
grams which normally require partitioning.

This work was interrupted in June of 1956 when it was decided that a
“650” would be obtained to handle some of Hanford's non-routine scientific
calculations. Because our own staff of programmers was already working
at full capacity and because non-routine scientific calculations occupied a
disproportionate amount of our manpower, it was decided that the “650”
would be customer programmed and operated. This meant we had in the

OMNICODE 61

first place to make this prospect attractive to our customers and then we had
to train them. In view of this and our over-all objective of having a
common language system we decided to prepare a “watered down" version
of OMNICODE for the “650.”

The “watering down” of the original version was not an unwelcome
prospect. The over-all project had assumed such proporations that it was
difficult for one person to comprehend in its entirety. So we were actually
grateful for the opportunity to discard some of the “bells and whistles” and
concentrate upon a system which would be a pilot model of OMNICODE.
This would allow us to test our original hypotheses without the complicating
influences of variable word length and multiple input/output units. How-
ever, it was clear from the outset that the data-processing ability of the “702”
would be needed to perform the assemblies.

o +SINT F)
OPERATION

LIHE ! LABEL T T8 CPERAND -t
H
|
01 | VARMIABLES oEF |l
o2 I« 1
o3 Iy 1
o4 : z |
[START READ I VARIABLES
[I TAKE i %
o7 l Div | i
08 | MuLT | PT,(3,14159)
09 I SIN : gl
10 } Ab \ t
" 1 o II 3
12 I 15 i
13 : TRANS E START
1 |
| |
| 1
| |
| |
| |

Fic. 5.

Figure 5 is a sample of 650 OMNICODE—the pilot version of
OMNICODE. The system has been in use since October. It is a floating
decimal interpretive system with simulated index registers. Through its
use one has at his disposal a vocabulary of 83 commands as compared with
the 35 operations built into the “650.”

One notices immediately the similarity between this and the original
version of OMNICODE. However, we have done away with auxiliary
forms. The entire program including record definition is written on the
Programming Form. The DEFINE instruction has been included to make
this possible. The LABEL portion of the form is used for the introduction
of names—names of records and fields as well as instructions. In our
example, we define the record VARIABLES by writing VARIABLES
against the left margin and entering DEF in the operation column. Fields
are written one space to the right of the left margin and have no operation.

o v———

- ——

62 Russert. C. McGEE

On line 08 we have an example of introducing a constant by its name.
The first time we see the constant PI, we enter it with its value. From
that point on, we merely write PI as on Line 11. One should note that we
do not specify values as floating point since this has been specified in the
definition of the system. Also, we have adopted the convention of drawing
a line when an operation refers to a previous result. The line is ignored
during keypunching but it serves to distinguish valid operands from un-
finished instructions while the program is being written.

The use of index registers is illustrated in the vector by matrix multipli-
cation of Fig. 6. Here we are dealing with records all of whose contents
are referred to by the same name. This is quite acceptable. All we need
do is indicate the number of words to be given this label so that adequate
storage will be reserved. In the third instruction, the value zero has been

V.J‘_E'_“i %14

LINE 1! LABEL DRLIRIED e OPERAND B
o1 |a = DEF } 3
0z |x | EF i 3
o3 |¥ | OEF | 10]
o4 | READ | A
0% 1' i 'l")
06 | READ i X
o7 \ WIT I 1
on | TAKE | 1| A
09 : MULT = 1| x
10 1 ace | R}
" ! TEST I e
12 } TEST \ J s
3 | PUNGH | ¥
14 [HALT i

; |

' |

' 1

|
Fic. 6

entered in the operand column. This causes all the storage assigned to this
record to be set to zero when the program is loaded. Any other value could
have been used as well.

A general remark seems in order regarding the tag column. It is used
to specify that one in a sequence of things to which reference is being made.
So in the fifth instruction we intend to say, “As of the time this instruction
is performed, consider only the first in the sequences of things tagged with
J,” even though in plain English it is easier to say, “Initialize J to 1.”

The program of Fig. 6 can be read, then, as follows:

Read a record A

Initialize J to 1

Read a record X

Initialize I to 1 (Continued)

OMNICODE 63

Take the Ith A

Multiply by the Ith X

Accumulate the result with the Jth ¥V

Test to see if] equals 3
If it does not, increment I by 1
and transfer to the instruction
following the last INIT I.
If it does, proceed to the next
instruction.

Test to see if J equals 5
If it does not, increment J by 1
and transfer to the instruction
following the last INIT J.
If it does, proceed to the next
instruction.

Punch the record ¥

Halt
ume| 1 Lasen o TAG OPERAND e
| iR L
o qlr.nu:n DATA ofF °
oz | TEMPERATURE
03 | wumioiry
04 | WiND SPEED
o5 | REACTOR pATA bEF
06 I remperarune
o7 | POWER LEVEL

READ
READ
TAKE
MULT
15
TAKL
ADD
MULT
sue
[H]
HALT

WEATHER DATA

REACTOR OATA

WEATHER DATA, TEMP

WIND SPEED

RESWLT 1

HUMIDITY

REACTOR DATA, POWER LEVEL
TEMPERATURE

RESULT 1

FINAL RESULT

m~
e s i e i i i

Fic. 7. Illustration of two-level reference.

Figure 7 illustrates the two level method used in OMNICODE for
referring to operands. One must give names to the fields of a record which
are unique within that record, but he may use the same name in different
records as often as he chooses. This brings us to one of the cardinal rules
of OMNICODE—wiz., whenever reference is made to a field, the field label
must be preceded by its record label if the field does not belong to the most
recently referred to record. Hence, on Line 10 we must refer to the record
Weather Data as well as the field Temp. If we did not do this we would
take the field Temp. from the record Reactor Data since Reactor Data is
the most recently referred to record. However, note that once we have
made reference to the record Weather Data it is not necessary to refer to a

B R

64 Russerl C. McGEE

record label again until Line 14 where reference is made to Power level—
a field in the record Reactor Data. This figure also illustrates how one
introduces working storage in OMNICODE. In line 12, the label Result 1
is seen for the first time. Since this is an IS instruction OMNICODE will
reserve a word of storage and associate with it the name Result 1.

Now let us suppose that the record label had been omitted in this example.
Figure 8 shows what the assembly routine would produce if this error were
committed. One will observe that the correct data address, 0647, was pro-
vided in the erroneous instruction. The assembly routine was able to make
this substitution correctly because Power Level is a unique field label. How-
ever, notice that the incorrect temperature is now being referred to on
Line 15. Because errors of this type can result in incorrect addresses
being assigned and because in many cases the assembly routine is never

e
LINE RBEL TAG RAN e NSTRUCTION
ol Eﬂﬂtn DATA ﬁﬁm 0643

oz| ITEmMP I 0643

03| |HUMIDITY | THE RECOAD LADEL , 0644

04| 1WIND SPEED REACTOR DATA A3 0845

0% | AEACTOR DATA. | DEF | BEEN OMITTED TO FH

3; = ;SMP S | CREATE AM ERAOR g:::

WER
oa| | READ i WEATHER DATA 0632 |0D 0B43 0i4d
oa| | READ REACTOR DATA 0633 |00 0646 0140
of ¢ mee | WEATHER DATA,TEMP 0634 (63 0643 oaza
" MUt | WIND SPEED 0633 |85 0G4S 0063
iz) Is 1 RESULT | 0836 |63 0648 Qiz!
i3]0 TAKE HUMIDITY 0637 |65 0644 0428
1af g aoo || Usrowen Lever &30 |65 0Ga7 0DIS
8 1 MULT | TEMP 0630 |65 D643 0085
16 sua | RESULT } o840 |66 0G40 O0OIB
T | 13 | FINAL RESULT og41 (B3 0649 012
af | HALY osaz |01 9999 9399
i-__.—l’-_-_"ﬁ_p-""——

ERROR LIST FOR JOB xaxxx
PAGE LINE “ LABEL OPERATION TAG OPERAND

ol 14 ADD POWER LEVEL

INVALID OPERAND
OPCRAND FOUND A8 FIELD LADEL

Fic. 8. Example of an erroncous program.

able to find the specified operand, an error entry is printed for each detected
error following the assembly listing. A sample error list with the entry
for the instant case is shown at the bottom of Fig. 8. The point we wish
to make here is that even though a person violates the rules of OMNICODE,
_the assembly routine will do what it can to produce a correct program and
then print a message describing any difficulties it has encountered. The
error we have described in this example is just one of thirteen different
error types that the assembly routine is able to detect. As we gain experi-
ence with the system we will probably find additional programming errors
that can be detected during assembly. We feel that if a problem is written
in OMNICODE and after assembly all the errors indicated on the error list
are corrected, then the only errors left in the the program should be logical
errors. So far, our experience has borne this out.

OMNICODE 65

Before looking to the future of OMNICODE let us summarize what
we have accomplished with this pilot model:

I

We have arrived at a language which we feel is well suited for
writing both scientific and commercial applications. We can take
very little credit for this; for, after all, the language we are using
is ordinary English with certain constraints applied to it by a pro-
gramming form.

While we are on the subject of language, it might be of interest to
digress long enough to point out that with the exception of the opera-
tion, one can write both symbolic and actual programs in OMNI-
CODE. That is, the names that one gives to instructions and values
are arbitrary and could hence be symbolic or actual addresses as
well as English Words. However, this procedure is not recom-
mended.

. We have developed an assembly routine for the “702” that will trans-

late OMNICODE programs to “650” programs. If I may be for-
given for endowing the machine with intelligence, we may say that
we have taught the “702” to understand English.

. We have substantially reduced the problem of training new personnel.

We have trained 45 engineers, physicists and mathematicians in 36
hours of classroom instruction. Most of these people had never
seen a computer before taking our courses but were able to write,
debug and run their own problems on the “650” after this small
amount of training. The training period will probably be reduced
when we become more familiar with OMNICODE and as more
comprehensive literature on the system becomes available.

. Debugging has been reduced to finding the logical errors in a

program.

The problems of documentation and communication that were
present in symbolic and actual codes have been greatly lessened
because OMNICODE programs are self-descriptive. Now one has
no choice in the matter of describing each instruction, because an
instruction and its description are synonymous. For the same
reason, it is a simple matter for one programmer to read another’s
code.

Perhaps the most important thing we have done has been to lay the
foundation for 702 OMNICODE. We have shown that assembly
of completely literal programs is a practical process and, in fact, uses
very little more machine time than it takes to assemble the same
programs written in a symbolic code.

This brings us to the topic: Where do we go from here? Well we

certainly will return to the project we started out to accomplish—aziz.,
OMNICODE for the “702.” So far as we can now see, there is nothing

66 Russerr C. McGEeE

about the language we are using that would make it unsuitable for any
present or future problems. Hence, we will look forward to writing OMNI-
CODE assembly routines for machines we may acquire in the future as
well as those we now have.

However, assuming that future versions of OMNICODE are completely
successful, we will have solved only half of the problem of communicating
with the machine in English. Although we are confident that debugging
will be reduced in future versions of OMNICODE, as it has been in the
present version, we are not so naive that we think debugging will become
a thing of the past. Hence, in order to complete the picture, we should
be able to derive diagnostic routines whose output is in the same language
in which the program is written. Or (if I may again be excused for over-
endowing the machine with intelligence), we might say: We have taught
the machine to understand English, now let’s teach it to write English.
This is perhaps a very ambitious proposal but it deserves a feasibility study
at least.

Indeed, we have little choice but to give serious consideration to such
methods. As machines become faster and are equipped with larger mem-
ories and more comprehensive instruction vocabularies, debugging programs
in machine language becomes increasingly difficult. This is true partly be-
cause machines with greater capabilities will work on more complex problems
and also because the increased complexity of their addressing and operation
code structures makes the machine language codes more difficult to read
and understand. This argument is particularly pertinent if a common pro-
gramming language is to be adapted. The benefits of the common language
will be only partially realized if programmers must also learn the languages
of every machine they work on. Hence, we at Hanford are looking forward
to the day when we will use a truly common language coding system—a
system common to all applications, common to all machines and finally,
common to debugging and program writing.

DISCUSSION

MoberaTOR JoEN W. CaRrr®: After hearing a definition of automatic
programming, I should like to give you an extension of the automatic pro-
gramming definition in rather crude terms, as to the direction in which 1
think the trend will go from here.

First, the computer must, in addition to the job you have heard about
today, be able to do the job of the automatic programmer. It must be able
to manipulate its own language; it must be able to understand its own
language ; it must be able to add symbols to its own vocabulary that it will
find of use to itself. Beyond this, it must be able to make, of its own
volition, comparisons between elements or structures within its own memory,
and therefore it must be able to search through its own memory with what
will turn out probably to be some sort of inductive manipulation. I think
the entire information which is available to the system now consisting of
programmer and computer must be made available to the machine alone.
That is something that will come.

If any of you are interested, I think there are two papers that will give
ideas about possible directions: first a paper by Newell and Simons, in the
LR.E. PGIT Transactions, with respect to a program for proving the
theorems inductively. It is not a regular deterministic procedure in the
classical sense of the word; it is a sort of hit-and-miss, but nevertheless,
successtul heuristic program, being done on the Johnniac. This procedure
makes use of the Rand machine at Santa Monica in a novel fashion, an
un-standard fashion, from the point of view of programmers. I understand
the machine has now proved some 47 theorems from Principia Mathematica.

"The second paper is one by Solomonoff, dealing with “Artificial Intelli-
gence,” which has not yet been published except in a private format. It will
be given at the I.R.E. Convention this spring. This is not advanced learn-
ing, but it is interesting that somebody has tried to do this, I think those
papers are worth noting.

MR. RoBERT SERRELL *: Am I correct in understanding that no part of
OMNICODE as at present constituted can be used on the “650” without a
“702” attachment ?

MR. McGee: That is correct—and I might say we are not in “cahoots”
with IBM, trying to sell the “702” s. It is just the way the situation
worked out,

! Mathematics Department, University of Michigan, Ann Arbor, Mich.
#Research Staff Member in Charge of Computation Laboratory, Radio Corporation of
America, RCA Laboratories, Princeton, N. J.

67

68 DiscussioNn oF McGEE PAPER

Mr. Dan C. Wirkins®: I really have a two-part question. I was
wondering how much storage is actually required on your “702” for the
“650” symbolizer. The reason for that question is this—do you think it
will be feasible with a full-blown “650” with tapes, etc., on it, to be able to
symbolize its own program without going to the w702re

Mg. McGeg: Our “650” is a stripped-down model.

Mr. WiLkins: What I mean is, with what you know of how you use
the “702” to do your symbolizing, do you think that with a tape attachment
on the “650” it could do its own, without the “702"?

Mg. McGee: I think you could, probably without great difficulty. Of
course, the problem is to find sufficient storage for the tables of literal wersus
actual addresses. That is, literal names wersus actual addresses would have
to be built up. We use our drums for that purpose. However, I should
imagine tapes would work out all right, because there are, generally speak-
ing, not as many English names introduced into the program as one might
expect. I think the answer to your first question would be yes.

Dr. Cagrr: I might comment here that you will hear 2 talk this afternoon
on how the Carnegie Tech compiler for the type “650” does its job. Be-
cause the type “650” has a restricted storage, this compiler doesn't have
literal addresses. You have Y1, Yz, etc.; you can have as many subscripts
as you want. One cannot use all the letters of the alphabet in symbolic
addresses, since the group that wrote the compiler didn’t have room to use
all letters if they had wanted to.

Mg, Franc A. Lanpee *: T was curious about the vector matrix multi-
plication, which is the usual way of solving simultaneous equations. Why
don’t you have just one command, saying “multiply”?

Mg, McGeg: That would be the thing we would do if we had a lot of
matrices or matrix work, at Hanford. Even if we had, I think we would
still use this example to illustrate the use of index registers. Certainly,
otherwise, we would have a set-up of subroutines.

Mg. Lanpee: When you go to completely symbolic addressing, have
you any idea with what efficiency you use the storage? The storage on
the “650” is only 2,000 memory spaces. I have an idea that completely
symbolic addressing using your storage is somewhat less efficient than if
you actually wrote out the address locations.

Mgr. McGeE: In the first place, a literal name will never get into the
“650.” You understand that. In other words, only actual “650” instruc-
tions will ever get into the “650." Corresponding to every OMNICODE

Mathematics Analyst, Temco Aircraft Corporation, Dallas, Texas.
4 Head of Computation Laboratory, The Dow Chemical Company, Midlaned, Mich.

DiscussioNn oF McGeE PApkr 69

instruction that one writes, you will get one “650” instruction, generally;
in some cases more—so I don’t see that instruction storage would be any
greater than if you were writing in actual. Now, number storage, that is
to say, input-output storage, would not be any greater except for the fact
that we don't allow overlapping of records. That is to say, we couldn’t
read a record B on top of a record A. They must be in separate storage
locations.

Now, as to working storage: if you wanted to put something away,
called Result 1, as we did in the example, it would be assigned one storage
location. If you had a Result 2, it would be a different one. But it is only
in these minor areas where the planner might have overlapped things that
you would use storage, I feel.

MR. A. M. PErser °: I wanted to raise another question concerning
efficiency. We have talked a lot about how automatic coding is improving
the efficiencies of programming, but we have said little about how it is
affecting the efficiency of the computer. [am thinking primarily of com-
puter speed. I would like to ask whether you feel OMNICODE is using
the “650” efficiently and if not—what balance should we aim for between
programming efficiency and computer efficiency ?

MR. McGeE: I can give you some quantitative information. First, we
feel if we are going to be doing scientific calculations, we are going to be
working in floating point; hence, we will have to use floating point sub-
routines. Most of the time will be spent in floating point subroutines.
These will be optimized, etec. In OMNICODE we use an interpretive
system, as mentioned, and since we are doing that, no attempt is made to
optimize the locations of pseudo-instructions.

However, notwithstanding all of this, we spend less than 20 per cent
of our time doing non-productive things such as interpretation, normalizing
results of operation, and so forth. So, I really don’t feel that this is a great
price to pay in view of the fact that we have saved so much in training.
Actually in our location—as I mentioned—it was only through the use of a
system like this that it was possible for us to have customer programming
without additional expense in training. In addition, we have had very
good success in having correct programs written. Most people have one
or two debugs, and in some cases none. I feel of course that the balance
is in favor of letting the programming system do the work.

Mr. Marviy SENbrOw *: You spoke of OMNICODE as for both
scientific and business-handling problems. The whole lecture was taken up
with scientific matters. I wondered if you would say more of the husiness
Systems.

8 The M. W. Kellogg Company, New York, N. Y.
¢ Engineer, Radio Corporation of America, Philadelphia, Pa.

B

e — N —

70 DiscussioNn oF McGEE PAPER

Mgr. McGEeE: Well, we will probably continue to do what we are now
doing. We will not do any business applications on the “650.” Right now
we do on the “702” a 7000-man payroll, and inventory controls. We have
an inventory-control system on the machine, a cost system, and we accounted
for all the classified documents at Hanford. The latter is quite a large
application. 1 am not too familiar with the particular applications. These
are just some I can think of.

Mz, Sexprow: What I meant was—can you give examples of the
language you are going to use in OMNICODE for the business applications ?

Mr. McGeg: We have planned to use the same or a very similiar
language. Of course, I think every time you do something for the first
time, having done it you want to start over again. You now have found
how you wanted to do it in the first place. In our work in OMNICODE
I don't think it is any different. There are changes we would like to malke.
However, we feel in general that we have arrived at the language we would
like to use. If I may answer one of the questions asked yesterday with

regard to today’s topic:

Questions were asked about mis-spelling and mispunctuating. We are
doing what I think may be helpful along these lines. Whenever we en-
counter a new literal operand, a new name, we remove all the blanks and
all the periods from the name before we store it in a table. So that if
during key-punching, a girl misunderstands the way something should be
spaced, or if the person writing the program writes “TEMP” one place and
“TEMP.” (with a period) somewhere else, these common differences in
form will not give the assembly system any trouble. I think this might be
a useful thought for helping to solve this problem of mis-spacing, mis-
spelling, and mispunctuation.

