PACT PRIMER

INTRODUC TION -

PACT, "Project for the Advancement of Coding Techniques",
is a system intended to make utilization of large scale

. digital computers easier for experienced programmers as
well as possible for the non-experienced. The aim of
this PRIMER is to make PACT I (as coded for the IBM Type
701) available to and usable by the latter group. In
addition, it can serve as an introduction to the more
detailed manual for those more experienced users.

AUGUST 1955

PACT PRIMER

" In the following discussion, we are going to treat PACT I
not as a system for use on a machine, but rather as the machine
itself. We are, in a certain sense, going to design a machine
which wili enable us to do the problems which arise in the
course of our work. Our machine, like all machines, will
not include all of the desirable features that one might ask
for. We think, however, that it will be better than most.

In order to design a machine to do our problems, we must

see what kind of problems we have. Let's begin with a simple

one:

EXAMPLE :

EG-1 Compute ¥ = AZ® 4+ BZ + D for one value of 2
CZ - E

wﬁat do we need 'in our machine to do this computation?
First, we need registers to hold the quantities involved.
We shall call these registers and their contents "FACTORS".¥*
We must have an instruction ("OPERATIONﬁ) whiéh allows us
to "TAKE" quantities from the Factors. We must have the
ability to "ADD", "SUBTRACT", "MULTIPLY", and "DIVIDE". We
should be able to put our final énswer into one of the
Factors (i.e. we want to make a Factor "EQUAL" to something).
We mu;t belable to /'HALT" when our problem is completed We
must have the ability to do the "STEPS'". involved in the

computation in a particular order.

Now, let us write down a "CODE" to carry out the computa-

* When capital letters and quotation marks are used, the
word 1s being defined. -

1A

tion we wisﬁ to do:

STEP OPERATION FACTOR
1 TAKE | Z
2 - MULTIPLY (by) C
3 SUBTRACT ! E
I ; EQUALS DENOMINATOR
5 TAKE Z
6 MULTIPLY (by) A
7 ADD | B
8 MULTIPLY (by) Z
9 ADD D
10 DIVIDE (by) DENOMINATOR
11 EQUALS Y
12 HALT :]

Note that in our Code, the result of one Step is avail-
able for use'as an operand for the succeeding Step only,
and that we therefore had to create the additional Factor
"DENOMINATOR". 1In general, we will have many such "inter-

mediate" quantities. Let us, therefore, create an addi-

i
tional convenience on air machine; namely, that the result
of step n (denoted by "Rn") shall be available on all suc-

ceeding steps. 1In order to differentiate between ordinary

| Factors and these new ones we will "CLUE" the machine by

placing the R in a special place..
Note also that we write many characters to specify our
operations. Let us therefore, again for convenience, make

our méchime accept "SYMBOLS" in place of "spelled out"

operations:
| OPERATION SYMBOL

TAKE (no symbol)

ADD +

SUBTRACT -

MULTIPLY X

DIVIDE 7

' EQUALS EQ

HALT HALT 3

-3=-

We shall now rewrite the Code of our preceding example:

STEP |[OPERATION CLUE FACTOR NOTES
1 Z .
(1B) 2 X C
3 = E CZ-E
i Z
5 X A
6 + B ZA+B
T X VA
8 + D NUMERATOR
9 / R 3 + Results
of 3
10 EQ 4
11 HALT

Let us now change our problem somewhat and see what
additional features we should like to have on our machine.
EXAMPLE:

2
EG-2 Compute Y, = AZ] + BZ, +D = F(Zi)

CZi O

for i = 1 to 10 in steps of 1 [1 = 1(1)10]
First we shall write a "FLOW DIAGRAM" to indicate how
we are going to do our problem:

| "SET" i to 1 |
L -

Compute Y, = F (2,)
Al

Increase i by one and "TEST"

to see if it is greater than 10 ™

4

i>10 1< 10 |

N

l HALT Jl

wlle

We need to add to our machine, to do this problem, the
ability to specify subscripts and to "SET" and "TEST" them.
As a part of ocur testing, we also need the ability to go
back to a particular step in our code. We shall put our
subscripts 1n a special place and also allow each of our
" Factors to have twp subscripts. (Eventually, we should o

like to deal with matrices.)

STEP OP CLUE | FACTOR Sy S,
2 SET 1 1
2 Z i
3 % (o
L & E
5 Z i
6 X A
7 + B
8 X z 3
9 o+ D
10 A R I
11 |EQ Y 1
12 |TEST 2 i 10
13 |HALT
EXPLANATION :

Step (1): Set i equal to 1 wherever it appears as a subscript
between the Set and Test Operations (steps 2, 5, 8,

11) -
Steps (2) through (11): These steps are essentially the

same as steps (1) through (10) of (1B).
Step (12): Increase i1 by 1 wherever it appears as a sub-

script between the Set and Test operations (steps

2, 5, 8, 11). 1If the new i is greater than 10,
Note: Our machine shall have the following restriction: when-
ever an operation (such as Test) requires that the next step
to be carried out is not the next step as numbered, then the
step to be carried cut must be within a certain class which

we define as "the first step 1n a sequence of steps" and
which will be mere fully explained later.

proceed to the next step [step (13)]; if it is
" less than or equal to 10, go ("TRANSFER") to the
step specified as the Factor step (2).
As a further extension of the probleﬁ we have been

doing, suppose we wanted to do the following:

EG-3 Compute: Y, = A zf +B2Z +D = F(z1i)
CZ; - E
if | Zy | >D 1= 1(1)10
Y, =2,

if |21| <D

Again, we shall begin by making a Flow Diagram
Start —> |$e§ A -7 o BB

b

thpute the quantity
|zil =

Is this quantity
greater than zero?

yes no

Y
Y, = F(Z1) Y, =2
03 ~ pd ~
: > ¢
Increase i by 1
and test to see if

i1t is greater than 10

v
yes no

Halt

This poses two additional problems; we should like to be

able to work easily with the absolute value of numbers; we

must be able to make comparisons and as a result of these .

comparisons "TRANSFER" to a given Step.

Operation Symbol Description
ABSOLUTE ABS "Take" the absolute value of
: the Factor.
TRANSFER ON TP If the result of the previous
POSITIVE Step 1s greater than zero,
go to the Step noted as the
Factor; otherwise proceed
in sequence.
TRANSFER ik Go to the step noted as the
Factor.
Code for EG-3
STEP OP 1 CLUE FACTOCR Sl Sy
4 X SET i 1
2 - ABS Z i
3 - D
i TP 8
5 .4 i !
6 EQ b4 2
7 T 18
8 P 1
<, x C
10 - E
11 Z g
12 x A
- 13 + B
. 14 X Z i
§ 15" + D
16 g7 R 10
17 EQ ¥ 1
18 TEST 2 i 10
19 HALT 3 J

Note that 1t is essential that all steps which use the sub-

script 1 must occur between the Set and Test.

EXAMPLE 4: Let us refer back to EG-1, replacing Y by F(2):

F(Z)=A'ZE+BZ+D

CZ-E

Now'suppose we wished to compute:
W=PF (Q) +T - F (R)

Note that with our machine as it now stands, we would be
obliged to write the code of (1B) twice in order to accomplish
our purpose (unless we wished to use a trick which is left
as an exercise for the reader). But we don't like tricks
and we are too lazy to write excessively, so we'll improve
our machine. We will call the Steps associated with a
given computation a "REGION", and we shall have our machine
able to "DO" a Regign and then return to the Step following

the Do. The code of (1B) then becomes

REGION STEP oP CLUE FACTOR Sl 52
1 1 Z
1 2 X @
1 5 - E
1 b Z
1 5 x A
1 6 + B
1 1 X Z

- 8 + D

1, 9 o R 3
1 10. EQ Y

The Halt is omitted because we no longer wish to stop
at the end of this particular computation.
Our new operation is "DO". Do the Region specified as

the Factor and return to the Step following the Do.

The Code for computing w

REGION | STEP OP CLUE | FACTOR S1 Sy
2 1 Q
2 2 EQ Z
2 E DO 1
2 Y
2 5 by P
2 6 EQ W
2 7 R
2 8 EQ Z
2 g DO i 5
2 10 Y
2 11 T
2 12 + W
2 13 EQ W

Note: Step (6) was needed for the reason desecribed
below; W was chosen as the factor in order to save factor
space.

" Our machine shall have the following restriction:

The results of a step in one region shall not be
avallable as a factor in any other region' unless defined
as a factor by an Equals; in addition, they ;111 not be
avallable to any steps in the given region if a "DO" has

occurred between the step whose result is wanted and the

step which uses this result.

SCALING

‘In all of our preceding examples, we have been working
with numbers whose magnitude has been ignored. Unfortun- -
ately,the.magnitude of numbers cannot be overlooked when one

is doing computation work (if any kind of significance is to

be retained). Therefore, we shall be required to specify for’

each of our arithmetic steps, the number of possible digits
to the left of the point resulting from the computation being
done on that step (or, if the result is less than 1.0, the
number of lead zeros in the result). We shall differentiate
between whole numbers and lead zeros by putting a minus sign
on the "Q" that we use to specify the latter.

Fér example:

12-345 would have Q = 2 to indicate 2 whole numbers

*01234 would have @ =-1 to indicate 1 lead zero.

There is one additional complication we must mention
before we proceed to make life somewhat easier: our machine

is a BINARY computer so that the whole numbers or lead zeros

must be expressed in terms of powers of 2. (A table of

- powers of 2 is included in the appendix.) Thus for the
numbers in the precéding example:
| 12-345 has Q = 4 (23 < 12-345 ¢ 2”)
«01234 has Q = -6 (2"7 < +01234 < 2"6) ;
Now to make life sqmewhat easier; we first note that
every Factor and the result of every step has a Q associated

with it. We may then define a "normal" specification of Q

as follows:

=10

1, In addition and subtraction, the Q of the result
is the Q of the larger of the two operands. .
2. In multiplication, the Q of the result is the
sum of the Q's of the two operands.
3. In division, the Q of the result is the difference
of the Q of the Dividend and that of the Divisor.
(Note that 2 and 3 are merely exponential arithmetic.)
We shall now give our machine an additional capability:
With but one exception, where Q is not specified, our machine
shall assume a "normal" Q for arithmetic operations. The ex-

ception is that every EQUALS shall have a Q specified.

Since 1t is not impossible to make errors in scaling,

we shall also put some checks into our machine:

1.) If the @ ("normal" or specified) for a division
1s not large enough to accommodate the quotient,
the machine will halt and turn a special (DIVIDE
CHECK) light on.

2.) 1If the Q ("normal" or specified) for any other
operation is not large enough to accommodate the
result of that operation, a specilal "overflow
indicator" shall be turned on. (Note that in
multiplication this may only occur from the
specified Q being wrong.) We shall also supply
an operation to "test" the overflow indicator.

Transfer on Overflow (TF). If the overflow indicator is on,
turn it off and then go to the Step noted as

the Factor; otherwise, proceed in Sequence.

-1]1=

Let us now return to example 2, giving values to our

letters;.

Compute o'
| Y, = AZ] + BZ, + D i=1(1)10
Czi,_ E
where A = 2

C = .56

D=7.5

E =16

-6<Zi$3-5

Let us assume that the numbers are in the machine with
Q's as noted below (the method of entering numbers into the
machine and getting answers out of it, "Input-Output", will

be discussed later).

Factor Q
A 2
B 2
Cc 0
D 3
E 5
Zi 2

Notes 1. The variable Zi must be scaled fof the maximum value
it will take on,
2. Although 24 = 16, there are 5 digits in the binary
rEprésentétion of 16 (10000); thus the scaling for e.
.ﬁe shall now Proceed to analyze our computation to find
the ‘maximum magniﬁude the various steps may give us. Note
that in order to evaluate the maximum Qi, we mustralso obtain

the minimum of the denominator

Azig T ;6 Specified Q

]

3 "Normal" @ =

]

AZ,+B<10.
(AZ,+B)Z i535'
(AZ 1+B)z 1+D542 .5

]

.336<02, < 1.96 |
14-04g |cZ,-E| <15.664
v, |< 3.03

LA > N S > > B >
I
O o L o o O
]
=, no (o) TN o \ I O

i
6
= 6
1
i
2

Note that in the computatioﬁ of the numerator, we gain
nothing by specifying Q; in that of the denominator we may
gain some significance; in addition, if we specified Q for -
the denominator, then the "normal" Q for the Quotient would
be correct. Oreadditional point is that it doesn't really pay to
specify Q@ for the first term of the denominator, since this

f
1s changed immediately by subtraction.

REGION STEP OP CLUE FACTOR Sl Sg Q
R |
1 1 SET 1 1
1 2 zZ i
1 3 X C
1 L - E 4
1 ‘5 pi i
1 6 X A
1 T + B
6 8 % z i
1 a 9 + D
: 10 | ./ R i
1 11 "EQ Y i 2
i | 12 TEST 2 1 10
1 13 HALT }

-13-

;

Numbers and the coding sheet: (see p. 16)

| A. 1In our preceding example, A, B, C, D, and E were
not really Factors in the sense of being variables. They
were merely numbers which were needed to carry out the
computation. To make life easier, we shall provide more

convenlent ways for using numbers.

1) Any integer, n, where - 999 < n < 999 may
be written in the space on the coding sheet
called "Factor" (the minus sign is written
in the "Clue" space). 1In order to differ-
entiate between integers and the normal
factors we have been discussing (such as Z),
we shall require the latter to contain at
least one alphabetic character.

2) Any number, Z, where |Z| < 34,359,738,368
may be written in the space provided on
the coding sheet and, providea the Factor
space is blank, will be used as the Factor.

B. Two additional conveniences will be added:

1) The negative of the result of a previous step
may be obtained by putting an N in the Clue
cotumn. If R or N is used, Q must be speci-
fied on the steps to which R or N re}ers.

2) The negative of any other factor ﬁay be ob-
tained by placing a minus sign in the clue

column.

w] =

Explanation of the coding sheet
1) The numbers such as "9", "11" written under the
tit;e‘of each column indicate card columns .
(Input to PACT is from cards).
" Cols. 9(1)11

Any mixture of alphabetic or numeric.

Cols. 12(1)15 - All numeric.(Col. 15 is usually left
blank to allow corrections to be
inserted.) :
Cols. 16(1)19 - (See operation list.) It is essen-
tial to start from the left; thus
Equals (EQ) would be in Cols. 16

and 17.

I

Col. 20

I

This is the Clue column R, N, or - .

Cols. 21(1)23 - Either a three digilt integer or at

least one alphabetic symbol. Important:
the factor: --X (where - means blank)
is completely different from -X- or
X--. 1In other words, it is essential

to be consistent as to where a symbol

is placed, if that symbol is to have

the same meaning in different steps.

Col. 24 - Used only when referring to a step
which does not have Col. 15 blank.

Cols. 25(1)27

Any combination of alphabetic and/or
numeric. Same restriction as on
Cols. 21(1)2e3.

Cols. 28(1)30 - Same as above.

2 diglt Q; negative Q is indicated
by placing a minus sign over the
left-most digit.

Cols. 31(1)32

Col. 33 - Sign cf number in Cols. 34(1)4%4.
Cols. 34(1)44

10 digit number with decimal polint
or 11 digit integer (see A2 above).

The sample coding sheet contains the example of page 12

using numbers in place of A, B, C, D, E.
We have given our machine one additional cabability: it

the start button is pressed after the machine has stopped as

-15-

the result of a HALT, we will go to the step noted as the

facﬁor; the factor on a-HALT step may not be left blank.

i J_ ._ -w ¥ ¥ L — LA | T T
kel ity SN % _ . _
T T T L |
] | N
T T ™ T T T T 4|“ T T T T _ T ﬂ L T m L) | T L)
B S — : | i | |
. LR UL T LR T | LA L R e oy T B i
_ | _ |
L ¥ ¥ T L) T T T T L] _ T T T T _ T T — T “.4 L T T
| . 3 | i
~ T T — T T 1] T T _ T 1_ T T T _ T T | LA
T T T ...u T T _ T T T 0 r h T m T T h T T
= T T T T T T + T T _.1 1.—... T T _ T
: | E F
T T T T T T T T T T T ﬁ T J\w T T n—rlﬂ
_ "r] |
] T T TR e T]
v T L Y T T T -I— .u Ld L] T -- 1 — T i T
; _ (-} L 4 | LS9] m.,.;]
L T P | LE i v 1] T % d‘-OJ T T T ﬁ -wdm —-1h.- T T
f |
I

SR

S310ON

s e

4IANNN :

4= gLz 24

¢S

s

ve
H401Dov4

L) L Ser B L " T L) T | T T T T . T L MQ ﬁ T =T r]
e M- MM Qﬂdﬂwq..h? S BN B e TR
e et e iyt S A T 3 il et pan Semmis joeve [GErm pratcic o T L - T |||J_.|. T T T o - t T T T T
T T Z X Te
T r T T T T T “! T 1 T T _V T
| T .m T + :L T
- T L L] T T n H T T T T ﬂ T -I*r T T t L RoEs CREE AR
| 2 ma
H u'l . . 4 ~——T 4 - r =y —
e T E S
T T ——— T — ™ T (— | wors _ T T T
\ 9 27 =Y
| . .
L o B IR BT I PR R B T M
- T [P R | T T T T T _ T 14 T _l T T F T T T F T L ™
- A 2
S
|
[~

d3ls

EULL &
‘934

40

39vd

3iva

A8 Q3XI3HD

40700 Quvd

'ON "904d

LSATVNY
‘ON gor

W37804d

i

At this point in the design of our machine, we have pro-
vidéd ourselves with a reasonable ability to do computations
but no way of getting numbers into or cut of the machine.' The
latter point will be discussed [irst (because it's easier!).

All output from.our machine shall be on printed "lists"
with a maximum of six 11 digit numbers printed across the
page. We requirc an cpera’ion te "LIST" our Factors and a
means of identifying the Factors (ID). For example: to
print the 6X6 matrix

A= (aij)’ we could code as follows:

Reg Step o) Clue PFactor Sl SE Q
20 1 Set i 1
20 2 LIST

20 3 ID A 1 1
20 4y 1D A i 2
20 5 .+ ID A g 3
20 6 ID A i l
20 7 ID A i 5
20 8 ID A i 6
20 9 TEST i 6
20 10 HALT 1

The resulting output will be:

) Bys ¢+ % & Bqg
a21 L] - L] . -

&
S R e

Note that in step 9 we did not specify a factor on the
TEST. Where a factor ig not specified 1n a TEST operation,
the transfer will be to the step immediately following the
Set for the same subscript.

The same example could have been coded as follows:

o o e

Reg Step OP Clue PFactor Sl SQ Q
¢ 2l 1 SET s 4.

21 2. .SET J 1

21 3 LIST

21 4 1D A 1 J
- 21 5 TEST J 6

21 6 TEST i 6

21 4 HALT 1

The resulting output would have been
i 1

22

466
Note that step 5 transfers to step 3; step 6 transfers
to step 2.

Input: !
Warning: This section 1s probably the most difficult
one in the entire Primer.

We shall begin by defining two terms:

1) Array - any factor which has subscripts (one
or two).
]
2) Scalar - any factor which has no subscripts.

The variable definition sheet

Any scalar for which we desire to enteﬁ (input)
initial values must be defined on the variable defini-
tion sheet.

=19~

All arrays must be defined on the variable defini-

tion sheet.

Examples: In example (1), all the quantities involved (A, B

‘ and 2

Card

C, D, E, ¥, Z) are scalars; all but Y are ones for which
we ﬁant to 1nﬁut values. All but Yy must be defined on
the variable definition sheet.

In example (2), A, B, C, D, E are scalars; Y,
4 are arrays. All must be defined on the variable
definition sheet.

In the example on the sample coding sheet, Y1 and

Zi are arrays and must be defined.

Layout of the Variable Definition Sheet
Cols.9 - 11 12 - 14 15 - 17 18 - 20 21 - 23 24 - 26
' FACTOR r51 S Q Dl D2

(3) (3) (3? (3) (3) (3)
The numbers in parentheses indicate the number of digita.
Insofar as the PRIMER is concerned, Sl and S2 will
always be left blank. Q mﬁst always be specified on
the Variable Definition Sheet (*¥XX). D, contains the

1
maximum value taken on by S1 for the given Factor,

.similarly D, and SE'

|
The Variable,Definition Sheet for the example of page

16 would be _ :
FACTCR Sl 'SE Q Dl D2
Z +02 010
X +02 010

Assume for the moment that compiling has been done. The

first page of output contains the "Variable List". For this

example it might well be in part as follows:
TAG REL LOC. - VARIABLE

1ST LAST FACT. S; Sy Q XKXXX
v 2 20 . 2 2 2
v 22 - 40 Y 2 2

The .only things of interest to us are: 1ST, LAST, FACT,

Slj 82*

We shall define "LOC" only as something that we have to

know and then write the equations:

]

(EQ 1) LoC (of X, ,)
(EQ E) Loc (of W,)

1ST + (1-1) S; + (3-1) S,

1ST + (1-1) 2
We shall also‘derine "P" as the number of digits to
the left of the decimal point.
. We @re now ready to fill out the input sheet. Assume

for the preceding example that

Zl = .6 ' 26 = 1.5
22 = .7 Z.T = 2.0
Z3 = 8 - ZB = 2.5
Zu = -9 29 = 3.0
Z5 = 1.0 Zi0= 3.5

Then the Pi are, in order: O, 0, 0, 05 1, 1, 1, 1, 1, 1

The LOC are, in order (according to EQ 2): 2, 4, 6, 8,
10, 12, 14, 16, 18, .20.

Fhe following restrictions apply to the input sheet
-5 S.p 5715; - 18 < Q < 52. All minus signs (Factor, P, Q)
are indicated by writing a minus cver .the left-most‘digit.

A filled-out input sheet is on the next pagen We now
need an operation to "READ" input cards.
READ: Input the Factors from cards. When a "12" punch

in card col. 80 is encountered, go on to the next

step.

FRCT T . =KoT SHeeT

Loc FACTOR Plojroe | FACTOR Plaf koe| FAcTOR |F Loc FRACTOR
oooocooodlol it iftrtr1111222j22j22i2223|3333333334/44(444444la .5 555555|56|66(666/666 7TT7TTTTTT
12345678901 2|345678901 2|34l56f7890{1 2345678901 2(34i5678lg: ! 34567890123 4567890123456

e0a 26 gonn ool o PO 10240004 | 7opn0 coogn PO|OZ 0006\ ¥ o000 oaaen 1900k nunﬁw»_m_ .ﬁhhﬁh Nelelrlotrd

co /s olfasnn _acoan K/ V2 o/ 2119000 aacaa |0f] O2 h.ﬁx._‘.\. Zogag_oaaac ol 10Aloe A\ Z5 000 gocoo

/Boonn ocooonlpl 1020020\ Z5000 o oedo] P2

-22-

Partial Summary and some details

The steps involved in doing a préblem on our machine
(assuming the analysis and flow diagram have been completed)
are as follows:

1. Do the coding and have the cards key-punched.

a. The last code card must have a "12" punch
in card column 80.

2. Make up the variable definition sheet and have the

.cards key-punched.

a. The last variable definition card must have
a ”12;l punch in card column 80.

- There must be at least one variable defini-
tion card (this card may contain only the
"12" punch in card column 80).

33 Arrange a deck as follows:

a. PACT load card. .

b. Code cards. [The fipst code card input will
contain the first instruction which is even-
tually executed.]

¢, Variaple Definition cards.

d. Two blank cards.

4. Put the PACT Compiler Tape on unit 403 of the IBM

Type TOl.

S Put the PACT Compiler Board in the printer.

6. Have tape units 400(1)403 ready; have printer

ready, have punch ready.

Ts Load the deck of (3) at zero.

10.

i 5

12,

13
14,

w28,

The cards generated in the punch are the running
deck; the order of this deck 1s critical.

The first page(s) of printed matter is the
"Variable List". Subsequent pages are the com-

plled code.

By use of the Variable List and EQ 1 and 2, prepare’

the input sheet and have the cards key-punched.

a. The last input card of a block must have a

"12" punch in card column 80. (See the
READ operation.)

Make up a%deck as follows:

a. The funning deck of (8)

b. The input cards of (10)

Put.the PACT running board in the printer and

have the printer ready..

Load the deck of (11) at zero.

Hope that the answers :ome out correctly.

24

Thus far, in designing our machine, we have been con-

cerned with giving it the ability to do operations which

are either necessary or extremely useful.

However, there

are many things we may add to the machine for nothing more

than convenience or general usefulness. This we have done

to a certain extent.

Let us, therefore, enumerate and de-

scribe the "comblete” set of PACT operations. (The word

"complete"

OPERATION
Take

Add
Subtract
Multiply

Divide

Equals

Absolute

Add
Absolute

Subtract
Absolute

Transfer

1s true only insofar as this Primer is concerned.)

SYMBOL TYPE
(Blank) 1
+

X

/

EQ 2
ABS 1
+ ABS

- ABS

T 1

DESCRIPTION

Take the factor as the first operand
of a sequence of operations.

Add the factor to the result of the

. previous step.

Subtract the factor from the result
of the previous step.

Multiply the result of the previous
step by the factor.

Divide the result of the previous
step by the factor and get the
quotient.

Put the result of the previous step
into the factor.

Take the absolute value of the factor
as the first operand in a sequence
of operations.

Add the absolute value of the factor
to the result of the previous step.

Subtract the absolute value of the
factor from the result of the pre-
vious step.

Go to the step noted as the factor.

-25-

OPERATION SYMBOL TYPE DESCRIPTION
Transfer on Go to the step noted as the factor
Zero TZ 1f the result of the previous step
1s zero. Otherwise, proceed in
sequence.
Transfer _ Go to the step noted as the factor if
on Plus TP the result of the previous step is

greater than zero. Otherwise, pro-
ceed in sequence.

Transfer on Go to the step noted as the factor

Negative TN i1f the result of the previous step

. : is less than zero. Otherwise, pro-
ceed 1in sequence.

Transfer on Test the overflow switch: if it is
Overflow TF on, shut it off and then go to the
’ step noted as the factor; if it is
off, proceed in sequence. [The over-
flow switch is turned on when a Q
is insufficient to accommodate the
result of its associated atep.]

Halt HALT i) Halt; if the start button is pushed .
go to the step noted as the factor.

Do Region P Do the region noted as the factor

and Return DO and return to the step following

the DO. :

Clear CL 3 Clear the factor to zero.

' Set SET 3 Set the subscript in S, to the value
noted or represented if S [Note: -

a subscript may not be set to zero.

Test * TEST 1 Increase the subscript noted in §

‘ by one. If this results in a valﬁe
which is greater than the value noted
or represented in 52’ proceed in se-
quence. Otherwise,“go to the step
noted as the factor or, if the factor
1ls blank, to the step immediately
following the SET for the same sub-
script.

Sine SIN Compute the sine of the factor. The
angle must be in radians. Q of
result is 1.

Cosine Cos Compute the cosine of the factor.
The angle must be in radians. Q

of result is 1.

e

OPERATION SYMBOL TYPE DESCRIFTION

Arctangent ARCT Compute the Arctangent of the factor,
The result is in radians. Q of result
=

Square '

Root SQRT 2 Compute the square root of the factor.

Logarithm LOG Compute the natural logarithm of the

factor. @Q of result is 6.
Exponential EXP 2 Compute e* where x is the factor.
Read READ Input factors from cards untll a

"12" punch in card column 80 is en-
countered. Then proceed to the next

step.
Print LIST Print the factor(s) specified by the
ID ID which occur immediately after the

LIST operation.
Type 1 operations are the ones to which a transfer may be

made. (See the Note on the bottom of page 4.)

Type 2 operations are ones for which Q must be specified.
The HALT operation and the transfer operations must have Q
blank.
' Summary

The essential aim of this Primer has been not only to
explain PACT to the inexperienced (or non-experienced) coder,
but also to make it a system which he could use with a
minimum of extra explanation. To accomplish this end, we
have, at various times: omitted information, oversimplified,
uttered half-truths, and on occasion, have just plain lied.
The experilenced programmer has no doubt recognized many of
these instances and we apologize if he has been confused by

them.

wS

Appendix A

Some pointers and additional restrictions

i 5 Every SET operation must be followed by a TEST
operation within the same region.

2. If a DO operation is performed between a SET and TEST,
the SET and TEST will have no effect in the region
specified by the DO, and viée-versa.

3. A subscript need not be SET to a number ; it may be
SET to a variable. If so, the variable must have
Q= 17.

4. When doing a LIST operation, the last ID cannot be
followed by a HALT. (If this is desired, put in a
"phony" TAKE before the HALT.)

9. The HALT operation cannot have a blank factor. [This
1s because the Halt acts as a "stop" then "transfer"

when the start button is depressed.]

